## **Supplementary information**

# The HaloTag as a general scaffold for far-red tunable chemigenetic indicators

In the format provided by the authors and unedited

## **SUPPLEMENTARY INFORMATION**

# The HaloTag as a general scaffold for far-red tunable chemigenetic indicators

Claire Deo<sup>1,2,6</sup>, Ahmed S. Abdelfattah<sup>1,6</sup>, Hersh K. Bhargava<sup>1,3</sup>, Adam J. Berro<sup>1</sup>, Natalie Falco<sup>1,4</sup>,

Helen Farrants<sup>1</sup>, Benjamien Moeyaert<sup>1,5</sup>, Mariam Chupanova<sup>1</sup>, Luke D. Lavis<sup>1,7</sup>\*, Eric R.

Schreiter<sup>1,7\*</sup>

<sup>1</sup>Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
<sup>2</sup>Present address: Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
<sup>3</sup>Present address: Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
<sup>4</sup>Present address: Pharmacological Sciences Graduate Program, University of California, Irvine, Irvine, CA, USA
<sup>5</sup>Present address: Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
<sup>6</sup>These authors contributed equally: Claire Deo, Ahmed S. Abdelfattah

<sup>7</sup>These authors contributed equally: Luke D. Lavis, Eric R. Schreiter

\*e-mail: lavisl@janelia.hhmi.org; schreitere@janelia.hhmi.org

#### SUPPLEMENTARY INFORMATION CONTENTS:

Supplementary Figures – pages S2-S8 Supplementary Tables – pages S9-S12 Supplementary Note – pages S13-S33

#### SUPPLEMENTARY FIGURES

gagttgtataaataa E L Y K . a – HaloCaMP1a

**Supplementary Figure 1**. DNA and amino acid sequences of HaloCaMP1a (a), HaloCaMP1b (b), HASAP1 (c), and HArcLight1 (d) annotated with sequence features.

|              | 10                   | 20                  | 30                      | 40                  | 50                  | 60          | 70                      | 80               | 90          | 100                    | 110         | 120           |
|--------------|----------------------|---------------------|-------------------------|---------------------|---------------------|-------------|-------------------------|------------------|-------------|------------------------|-------------|---------------|
|              |                      | nuck                | ear export signal       |                     |                     |             | 6xHis affinity to       | ag               |             | peptide -              | MLCK        |               |
| atget        | gcagaacgag           | cttgctctta          | agttggctgga             | acttgatatta         | acaagact            | ggaggttetea | atcatcaccaco            | caccatgga        | tecgecegte  | gtaaatggca             | gaaaacaggcc | atgcg         |
| ML           | Q N E                | LAL                 | K L A G                 | LDI                 | Ν Κ΄Τ               | GGSI        | ннн                     | ННĞ              | SAR         | R K W Q                | КТĞ         | H A           |
| _            | poptido M            |                     | linker                  |                     |                     |             |                         | an Hala Taa      |             |                        |             |               |
| attea        | tactatogat           |                     | accetaaattt             | .ucaucuuau          | acettecam           | accttocaca  | caccgacgto              | адесадова        | retgateateg | atcagaacgti            | tttatcgagg  | ataca         |
| V R          | A I G                | R L S               | S P E F                 | A A E               | T F Q               | A F R       | гтр v                   | G R K            | L I I       | D Q N V                | F I E       | G T           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | cpHaloTag   |                         |                  |             |                        |             |               |
| ctgcc        | gatgggtgtc:<br>M G V | gtccgcccgc          | tgactgaagto<br>I T F V  | gagatggaco<br>F M D | attaccgc            | gageegtteet | gaatcetgtt              | Jaccgcgag        | P I W       | gcttcccaaa<br>R F P N  | gagetgecaa  | tcgcc         |
|              |                      | , K L               |                         |                     |                     | 2 7 1 1     |                         | DKL              |             |                        |             |               |
|              |                      |                     |                         |                     |                     | cpHaloTag   |                         |                  |             |                        |             |               |
| ggtga        | gccagcgaac           | atcgtcgcgc          | tggtcgaagaa             | tacatggac           | ggctgcac            | cagteceetgt | cccgaagetg              | ctgttctgg        | Iggcaccccag | gcgttctgat             | cccaccggccg | aagcc         |
| G E          | PAN                  | I V A               | LVEE                    | Y M D               | WLH                 | QSP         | / P K L                 | LFW              | GTP         | GVLI                   | PPA         | ΕA            |
|              |                      |                     |                         |                     |                     | coHeloTeg   |                         |                  |             |                        |             |               |
| actea        | rectagecaaa          | agectgecta          | actocaagoot             | atagacato           | acceagat            | stgaatetget | gcaagaagac              | accordac         | ctgatcggca  | acasastcac             | acactaactat | cgacg         |
| A R          | L A K                | S L P               | N C K A                 | V D I               | G P G               | L N L I     | . Q E D                 | N P D            | L I G       | S E I A                | R W L       | S T           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
| 0            | cpHaloTag            |                     | c                       | rcular permutation  | n linker            |             |                         |                  | cpHa        | aloTag                 |             |               |
| ctcga        | gatttccggc           | ggaggaacag          | gtggttctggt             | ggaacaggg           | gtagcgga            | ggtacaggag  | gaagtatggcg             | gagategga        | actggattcc  | cgtttgatcc             | jcattatgtgg | aagtt         |
|              |                      | 0 0 1               | 0 0 3 0                 | 0 1 0               | 0 3 0               | 0 1 0 0     | 5 5 M A                 | 2 1 0            | 107         | Frur                   |             | L V           |
|              |                      |                     |                         |                     |                     | cpHaloTag   |                         |                  |             |                        |             |               |
| ctggg        | agagegeatg           | cattatgtgg          | acgttggtcct             | cgtgatggg           | acaccagtg           | etgtteettea | acggcaatccg             | acategteg        | tacgtgtggc  | gtaatatcato            | eccgcacgttg | ccccc         |
| LG           | ERM                  | ΗΥV                 | D V G P                 | R D G               | TPV                 | LFLI        | I G N P                 | T S S            | Y V W       | RNII                   | PHV         | A P           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | cpHalo lag  |                         |                  |             |                        |             |               |
| T H          | R C I                | A P D               | L I G M                 | G K S               | D K P               | D L G Y     | / F F D                 | D H V            | R F M       | D A F I                | E A L       | G L           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | cpHaloTag   |                         |                  |             |                        |             |               |
| gagga        | agtagttttg           | gtgatccatg          | attggggtagt             | gctctgggg           | tccattgg            | gccaagcgtaa | acccagaacgc             | gtgaaagga        | attgccttta  | tggagttcat             | cgtccgattc  | caaca         |
| EE           | V V L                | V I Н               | D W G S                 | ALG                 | FHW                 | AKRI        | N P E R                 | VKG              | IAF         | MEFI                   | RPI         | РТ            |
| cpH          | HaloTag              | linker 2            |                         |                     |                     |             | calmodu                 | lin              |             |                        |             |               |
| taaa         | cgaatggcga           | gaatttgcac          | gcgatcaatta             | acagaggaa           | cagattoco           | gagtttaagg  | agegttetet              | ttatttgat        | aaggatggcg  | acggtacaat             | cactactaaag | aatto         |
| W D          | EWR                  | EFA                 | R D Q L                 | TEE                 | QIA                 | EFKI        | E A F S                 | LFD              | κ́DĞ        | DĞTI                   | ттк         | EL            |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | calmodulin  |                         |                  |             |                        |             |               |
| ggaac<br>G T | V M R                | S L G               | aaaatccgaca<br>Q N P T  | E A E               | L Q D               | M I N E     | iggtagacgcco<br>E V D A | D G N            | G T I       | actttccggaa<br>D F P E | F L T       | ntgatg<br>M M |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | calmodulin  |                         |                  |             |                        |             |               |
| gcacg        | caaaatgaaa           | gataccgatt          | ctgaagaagag             | atccgtgaa           | gettteegt           | gtttttgataa | agatgggaac              | ggetacate        | agtgetgetg  | agttacgccat            | gtgatgacaa  | atctg         |
| АК           | кмк                  |                     | SEEE                    | IRE                 | AFR                 | VFDI        | C D G N                 | GYI              | SAA         | ELRH                   | VMI         | NL            |
|              |                      |                     |                         |                     | calmo               | dulin       |                         |                  |             |                        | linke       | r             |
| qqqqa        | aaaacttacc           | gacgaagaag          | tagacgaaato             | attcgcgag           | geggatatt           | gacgggggatg | acaagtaaac              | tacgaggaa        | itttgtgcaga | tgatgaccgc             | caagetegaga | tttcc         |
| ĞΕ           | KLT                  | DEE                 | V D E M                 | IRE                 | A D I               | DGD         | G Q V N                 | Y E E            | FVQ         | м м т а                | K L E       | I S           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              | linker               |                     |                         |                     |                     |             | EGFP                    |                  |             |                        |             |               |
| ggcgg<br>G G | Cggaagegge<br>G S G  | M V S               | aggggggaggaa<br>K G E E | L F T               | grgrgrggrg<br>G V V | P I L \     | agagetegate             | G D V            | N G H       | AATTTCCTGTC<br>K F S V | S G E       | gtgag<br>G E  |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | EGFP        |                         |                  |             |                        |             |               |
| ggaga        | tgcaacttat           | ggaaaactga          | cattgaaatto             | atctgcaca           | acaggcaaa           | ttgcctgtcco | ctggcctacc              | ctggtaaco        | acceteactt  | atggcgttca             | gtgetteteec | ggtat         |
| GD           | AIY                  | GKL                 | ILKF                    | ICI                 | IGK                 | LPV         | , w p i                 | LVI              | 1 L 1       | YGVQ                   | CFS         | RY            |
|              |                      |                     |                         |                     |                     | EGFP        |                         |                  |             |                        |             |               |
| cctga        | tcacatgaaa           | cagcatgatt          | tetteaaatea             | gcaatgccc           | aaggttat            | attcaagage  | gaccatetti              | ttcaaggac        | gatggaaact  | ataaaaccag             | agetgaggtta | agtte         |
| PD           | н м к                | Q H D               | FFKS                    | A M P               | EGY                 | VQEI        | ξ T I F                 | FKD              | DGN         | YKTŔ                   | A E V       | КF            |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | EGFP        |                         |                  |             |                        |             |               |
| gaggg        | agatactttg           | gtgaatcgga<br>v N R | tcgaactgaag             | gggatagaci          | E K F               | gatgggaacat | tttggggcata             | aaactcgaa<br>KIF | itataactaca | actcccacaa<br>N S H N  | gtgtatatca  | tggct<br>M A  |
| _ 0          |                      |                     | L K                     | 5                   |                     |             |                         |                  |             |                        |             |               |
|              |                      |                     |                         |                     |                     | EGFP        |                         |                  |             |                        |             |               |
| gacaa        | acagaagaac           | gggatcaaag          | taaattttaag             | gatacgacaca         | aatatagag           | gacggtagtg  | ccaacttgct              | gatcactac        | cagcagaata  | cacccatcgga            | agacggacccg | ttctc         |
| D K          | Q K N                | GIK                 | VNFK                    | IRH                 | NIE                 | DGS         | Q L A                   | DHY              | QQN         | TPIG                   | DGP         | V L           |
|              |                      |                     |                         |                     |                     | FOFP        |                         |                  |             |                        |             |               |
| ttacc        | coataateac           | tatetetete          | cacaateeget             | ctatctasa           | atocaaao            | raaaagggggg | accacatanta             | atacttasa        | ttoattacaa  | coactaat >+            | cacottogoca | taa>+         |
| L P          | D N H                | Y L S               | T Q S A                 | L S K               | D P N               | E K R I     | ) H M V                 | L L E            | F V T       | A A G I                | T L G       | M D           |
|              |                      |                     |                         |                     |                     |             |                         |                  |             |                        |             |               |

#### b – HaloCaMP1b

gagttgtataaataa

20 120 10 6xHis affinity tag atgetgeagaacgagettgetettaagttggetggaettgatattaacaagaetggaggtteteateateaceaceaceatggagtgegggttatteeeagaettgataeeetgataete M L Q N E L A L K L A G L D I N K T G G S H H H H H H G V R V I P R L D T L I L linker1 cpHaloTag gtgaaagcaatgggccaccgaaaacgattcggtaacccctttaggcctaaggagaccttccaggccttccgcaccaccgacgtcggccgcaagctgatcatcgatcagaacgtttttatc ccaatcgccggtgagccagcgaacatcgtcgcgctggtcgaagaatacatggactggctgcaccagtcccctgtcccgaagctgctgttctggggcaccccaggcgttctgatcccaccg cpHaloTag gccgaagccgctcgcctggccaaaagcctgcctaactgcaaggctgtggacatcggcccgggtctgaatctgctgcaagaagacaacccggacctgatcggcagcgagatcgcgcgctgg A E A A R L A K S L P N C K A V D I G P G L N L L Q E D N P D L I G S E I A R W cpHaloTag circular permutation linker cpHaloTag ctgtcgacgctcgagatttccggcggaggaacaggtggttctggtggaacagggggtagcggaggtacaggaggaagtatggcggagatcggaactggattcccgtttgatccgcattat L S T L E I S G G G T G G S G G T G G S G G T G G S M A E I G T G F P F D P H Y cpHaloTag gtggaagttetgggagagegeatgeattatgtggaegttggteetegtgatgggaeaecagtgetgtteetteaeggeaateegaeategtegtagtggegtaatateateeegeae V E V L G E R M H Y V D V G P R D G T P V L F L H G N P T S S Y V W R N I I P H cpHaloTag gttgcccccaagcaccgctgcattgcccctgacttaattggtatggggaaaagtgataagcctgatctgggggtacttctttgacgaccacgtacgcttcatggatgcttttattgaagca V A P K H R C I A P D L I G M G K S D K P D L G Y F F D D H V R F M D A F I E A cpHaloTag cpHaloTag linker2 -atgatgggcacgcaaaatgaaagataccgattctgaagaagagatccgtgaagctttccgtgtttttgataaagatgggaacggctacatcagtgctgctgagttacgccatgtgatgaca M M A R K M K D T D S E E E I R E A F R V F D K D G N G Y I S A A E L R H V M T linker aatctgggggaaaaacttaccgacgaagaagtagacgaaatgattcgcgaggcggatattgacggggatggacaagtaaactacgaggaatttgtgcagatgatgaccgccaagatttcc N L G E K L T D E E V D E M I R E A D I D G D G Q V N Y E E F V Q M M T A K I S ggcggcggaagcggcatggtctctaagggggaggaactctttaccggtgtggtgccaatacttgtagagctcgatggggacgttaatggacacaaattttctgtctcaggtgagggtgag ggagatgcaacttatggaaaactgacattgaaattcatctgcacaacaggcaaattgcctgtcccctggcctaccctggtaaccaccctcacttatggcgttcagtgcttctcccggtat . cctgatcacatgaaacagcatgattcttcaaatcagcaatgcccgaaggttatgttcaagagcggaccatctttttcaaggacgatggaaactataaaaccagagctgaggttaagttc P D H M K Q H D F F K S A M P E G Y V Q E R T I F F K D D G N Y K T R A E V K F gagggagatactttggtgaatcggatcgaactgaaggggatagacttcaaagaggatgggaacattttgggggcataaactcgaatataactacaactccccacaacgtgtatatcatggct E G D T L V N R I E L K G I D F K E D G N I L G H K L E Y N Y N S H N V Y I M A -gacaaacagaagaacgggatcaaagtaaattttaagatacgaccaatatagaggacggtagtgtccaacttgctgatcactaccagcagaatacacccatcggagacggaccgttctc D K Q K N G I K V N F K I R H N I E D G S V Q L A D H Y Q Q N T P I G D G P V L t tgcccgataatcactatctctctacaaatccgctctgtctaaagatccaaacgaaaagcgggaccacatggtactgcttgagttcgttacagccgctggtatcaccttgggcatggat L P D N H Y L S T Q S A L S K D P N E K R D H M V L L E F V T A A G I T L G M D

| <b>c – HASAP1</b> . At amino acid position 467, HASAP0.1=R, HASAP1=G. |  |
|-----------------------------------------------------------------------|--|

| 10                            | 20                    | 30                  | 40                 | 50                  | 60                      | 70                  | 80                           | 90                     | 100                   | 110 12                       | D    |
|-------------------------------|-----------------------|---------------------|--------------------|---------------------|-------------------------|---------------------|------------------------------|------------------------|-----------------------|------------------------------|------|
|                               |                       |                     |                    |                     | GgVSD S1-3              |                     |                              |                        |                       |                              |      |
| atggagacgactgtga<br>M E T T V | ggtatgaaca<br>R Y E Q | ggggtcagag<br>G S E | ctcactaaa<br>L T K | acttcgagct<br>T S S | ctccaacagca<br>S P T A  | agatgagccc<br>D E P | acgataaaga<br>TIK            | ittgatgatgo<br>I D D 0 | rtcgtgatgag<br>R D E  | ggtaatgaacaagac<br>G N E Q D | 120  |
|                               |                       |                     |                    |                     | GgVSD S1-3              |                     |                              |                        |                       |                              |      |
| agctgttccaatacca<br>S C S N T | ttaggagaaa<br>I R R K | aatttccccg<br>ISP   | tttgtgatg<br>F V M | tcatttggat<br>S F G | tcagagtatt<br>F R V F   | tggagttgtg<br>G V V | cttatcatto<br>L I I          | tagacatcat<br>V D I I  | agtggtgatt<br>VVI     | gtggatctggccatc<br>V D L A I | 240  |
|                               |                       |                     |                    |                     | GgVSD S1-3              |                     |                              |                        |                       |                              |      |
| agtgagaagaaaagag<br>S E K K R | gcattagaga<br>G I R E | gattettgaa<br>I L E | ggtgtttcc<br>G V S | ctggctatag<br>L A I | geactettette<br>A L F F | ccttgttgat<br>L V D | gtteteatga<br>V L M          | lgagtgtttgt<br>RVFV    | tgaaggette<br>/ E G F | aagaactatttccgg<br>K N Y F R | 360  |
|                               |                       |                     | GgVSD S1-3         | 3                   |                         |                     |                              |                        | cpHaloTag             |                              |      |
| tccaaactgaatactt<br>S K L N T | tggatgcagt<br>L D A V | catagtagtg<br>I V V | ggcactctg<br>G T L | ctaattaata<br>L I N | Atgacctactco<br>M T Y S | F S D               | CttgCtgCCt<br>L A A          | F A R E                | igacettecag<br>TFQ    | geetteegeaceace<br>A F R T T | 480  |
|                               |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| gacgtcggccgcaagc<br>D V G R K | tgatcatcga<br>L I I D | Cagaacgtt<br>Q N V  | tttatcgag<br>F I E | ggtacgctgc<br>G T L | cgatgggtgto<br>PMGV     | v R P               | ctgactgaag<br>L T E          | rtcgagatgga<br>V E M E | CCATTACCGC<br>HYR     | gagccgttcctgaat<br>E P F L N | 600  |
|                               |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| cctgttgaccgcgagc<br>P V D R E | cactgtggcg<br>P L W R | cttcccaaac<br>F P N | gagetgeea<br>E L P | ategeeggtg<br>I A G | jagccagcgaad<br>E P A N | catcgtcgcg<br>IVA   | ctggtcgaag<br>L V E          | jaatacatgga<br>E Y M D | etggetgeae<br>WLH     | cagtcccctgtcccg<br>Q S P V P | 720  |
|                               |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| aagetgetgttetggg<br>K L L F W | gcaccccagg<br>G T P G | cgttctgatc<br>V L I | CCACCGGCC<br>PPA   | gaagccgctc<br>E A A | cgcctggccaaa<br>R L A K | aagcetgeet<br>S L P | aactgcaago<br>N C K          | ictgtggacat<br>A V D I | G P G                 | ctgaatctgctgcaa<br>LNLLQ     | 840  |
|                               |                       |                     | cpHaloTag          |                     |                         |                     |                              | circu                  | ar permutation link   | ər                           |      |
| gaagacaacccggacc<br>E D N P D | tgatcggcag<br>L I G S | cgagatcgcg<br>E I A | cgctggctg<br>R W L | tcgacgctcg<br>S T L | gagatttccggd<br>E I S G | cgagccaacc<br>E P T | actggaggca<br>T G G          | igeggaggead<br>S G G 1 | caggaggcagc<br>G G S  | ggaggcacaggaggc<br>G G T G G | 960  |
| cir                           |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| agcatggcagaaatcg<br>S M A E I | gtactggctt<br>G T G F | P F D               | CCCCATTAT          | gtggaagtco<br>V E V | ctgggcgagcgo<br>L G E R | catgcactac<br>M H Y | gtcgatgttg<br>V D V          | gtccgcgcga<br>G P R D  | tggcacccct<br>G T P   | gtgctgttcctgcac<br>V L F L H | 1080 |
|                               |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| ggtaacccgacctcct<br>G N P T S | cctacgtgtg<br>S Y V W | gegeaacate<br>R N I | atcccgcat<br>I P H | gttgcaccga<br>V A P | acccatcgctgo<br>T H R C | I A P               | gacctgatco<br>D L I          | gtatgggcaa<br>G M G M  | atccgacaaa<br>( S D K | ccagacctgggttat<br>PDLGY     | 1200 |
|                               |                       |                     |                    |                     | cpHaloTag               |                     |                              |                        |                       |                              |      |
| ttettegaegaeeaeg<br>F F D D H | tccgcttcat<br>V R F M | ggatgccttc<br>D A F | atcgaagcc<br>I E A | ctgggtctgg<br>L G L | gaagaggtcgto<br>E E V V | CCTGGTCATT<br>L V I | cacgactggg<br>H D W          | geteegetet<br>G S A L  | gggtttccac<br>. G F H | tgggccaagcgcaat<br>W A K R N | 1320 |
|                               |                       |                     | cpHaloTag          |                     |                         |                     |                              |                        | GgVSD S4              |                              |      |
| ccagagcgcgtcaaag<br>P E R V K | gtattgcatt<br>G I A F | tatggagttc<br>M E F | atccgccct          | atcccgacct<br>I P T | gggacgaatg<br>W D E W   | gccagaattt<br>P E F | R467G<br>gccgggacag<br>A G T | atcagatgco<br>D Q M F  | ctcaaatggtg<br>Q M V  | acacttttgcgagtt<br>T L L R V | 1440 |
|                               |                       | GgVS                | SD S4              |                     |                         |                     |                              |                        |                       |                              |      |
| ctgcgaatagtgatcc<br>L R I V I | tgattcgaat<br>L I R I | ctttcgcctt<br>F R L | gccagccag<br>A S Q | аадааасаас<br>ККО   | tggaggtagt<br>L E V V   | aacataa<br>T.       |                              |                        |                       |                              | 1512 |

С

gagategegegetggetggetggegetggegetggegetggetggetggetggetggetggetggetggetggetggetggegetggegetggegetggegegetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetggetg

|               | 10                  | 20                  | 30                    | 40                   | 50                  | 60                     | 70                  | 80                   | 90                    | 100                 | 110                 | 120          |
|---------------|---------------------|---------------------|-----------------------|----------------------|---------------------|------------------------|---------------------|----------------------|-----------------------|---------------------|---------------------|--------------|
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     |              |
| atgga<br>M E  | gggattcgac<br>G F D | ggttcagatt<br>G S D | ttagtcctcc<br>F S P P | agctgattta<br>A D L  | gttggcgttg<br>V G V | gcggtgcagt<br>G G A \  | catgcggaac<br>M R N | gtcgttgacg<br>V V D  | tcacgataaa<br>V T I N | tggtgacgtc<br>G D V | actgctccgc<br>T A P | cgaaa<br>P K |
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     |              |
| gcagc<br>A A  | gccaagaaaa<br>P R K | agtgaatcgg<br>S E S | taaagaaagt<br>v к к v | tcattggaat<br>H W N  | gatgtagacc<br>D V D | aaggaccgag<br>Q G P S  | tgaaaaacca<br>E K P | igagacaagac<br>E T R | aggaggaacg<br>Q E E R | aatagatata<br>I D I | cccgagattt<br>P E I | caggt<br>s G |
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     |              |
| ctatg<br>L W  | gtggggcgag<br>W G E | aatgaacatg<br>N E H | gagtgggcgg<br>G V G G | tgggagaatg<br>G R M  | gagataccta<br>E I P | ictactggtgt<br>T T G \ | aggtcgcgtc<br>G R V | cagtttcgtg<br>Q F R  | tccgagcagt<br>V R A V | gattgatcat<br>I D H | ctagggatgc<br>L G M | gagcc<br>R A |
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     |              |
| tttgg<br>F G  | agtetteeta<br>V F L | attctcttgg<br>I L L | acatcatcct<br>D I I L | Catgatcatto<br>M I I | gateteagte<br>DLS   | ttccaggaaa<br>LPGP     | aagtgaatct<br>S E S | tcacaatcct<br>SQS    | tttatgacgg<br>F Y D G | gttggctttg<br>L A L | gctctttctt<br>A L S | gttat<br>C Y |
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     |              |
| F M           | gctggattta<br>L D L | ggattaagga<br>G L R | tatttgccta<br>I F A Y | CGGGCCCAAG<br>G P K  | aatttettea<br>NFF   | T N P V                | ggaggttgct<br>'EVA  | .gatggcttga<br>D G L | ttatcgttgt<br>I I V V | cacattcgtc<br>T F V | gtcacgatat<br>V T I | tttac<br>F Y |
|               |                     |                     |                       |                      |                     | CiVSD                  |                     |                      |                       |                     |                     | H            |
| actgto<br>T V | gttagatgaa<br>L D E | tactttcaag<br>Y F Q | aaacaggagc<br>E T G A | cgatggtttg<br>D G L  | gggcagttgg<br>G Q L | yttgtgttggd<br>VVL4    | CCGTTTGCTG<br>R L L | R V V                | gattagcaag<br>R L A R | aatatttat<br>IFY    | tcccatcaac<br>S H Q | aaatc<br>Q I |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| ggtac<br>G T  | tggctttcca<br>G F P | ttegaceece<br>F D P | attatgtgga<br>H Y V E | agteetggge<br>V L G  | gagegeatge<br>E R M | actacgtcga<br>H Y V [  | tgttggtccg<br>V G P | gegegatggea<br>R D G | cccctgtgct<br>T P V L | gttcctgcac<br>F L H | ggtaacccga<br>G N P | cctcc<br>T S |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| tccta<br>S Y  | cgtgtggcgc<br>V W R | aacatcatcc<br>NII   | cgcatgttgc<br>P H V A | accgacccat<br>P T H  | cgctgcattg<br>R C I | JCTCCAGACCT<br>A P D L | gatcggtatg<br>I G M | jggcaaatccg<br>G K S | acaaaccaga<br>D K P D | cctgggttat<br>L G Y | ttettegaeg<br>F F D | accac<br>D H |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| gtccg<br>V R  | cttcatggat<br>F M D | gccttcatcg<br>A F I | aagccctggg<br>E A L G | L E E                | gtegteetgg<br>VVL   | ytcattcacga<br>V I H [ | ctggggctcc<br>W G S | gctctgggtt<br>A L G  | tccactgggc<br>F H W A | caagcgcaat<br>K R N | ccagagcgcg<br>P E R | tcaaa<br>V К |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| ggtat<br>G I  | tgcatttatg<br>A F M | gagttcatcc<br>E F I | gecetatece<br>R P I P | gacctgggac<br>T W D  | gaatggccag<br>E W P | gaatttgccco<br>E F A F | cgagacette<br>E T F | Caggeettee<br>Q A F  | gcaccaccga<br>R T T D | cgtcggccgc<br>V G R | aagctgatca<br>K L I | tcgat<br>I D |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| cagaa<br>Q N  | CGTTTTTTTT<br>V F I | gagggtacgc<br>E G T | tgccgatggg<br>L P M G | tgtcgtccgc<br>V V R  | ccgctgactg<br>P L T | jaagtcgagat<br>EVEM    | ggaccattac<br>D H Y | cgcgagccgt<br>R E P  | teetgaatee<br>F L N P | tgttgaccgc<br>V D R | gagccactgt<br>E P L | ggcgc<br>W R |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| F P           | aaacgagctg<br>N E L | ccaatcgccg<br>PIA   | gtgagccagc<br>G E P A | gaacatcgtc<br>N I V  | gegetggteg<br>A L V | jaagaatacat<br>E E Y M | ggactggctg<br>DWL   | JCACCAGTCCC<br>H Q S | ctgtcccgaa<br>PVPK    | gctgctgttc<br>L L F | tggggcaccc<br>W G T | caggc<br>P G |
|               |                     |                     |                       |                      |                     | HaloTag                |                     |                      |                       |                     |                     |              |
| gttct<br>V L  | gateccaceg<br>I P P | gccgaagccg<br>A E A | ctcgcctggc<br>A R L A | caaaagcctg<br>K S L  | cctaactgca<br>PNC   | aggctgtgga<br>K A V [  | catcggcccg<br>I G P | ggtctgaatc<br>G L N  | tgctgcaaga<br>L L Q E | agacaacccg<br>D N P | gacctgatcg<br>D L I | gcagc<br>G S |
|               |                     | ł                   | laloTag               |                      |                     |                        |                     |                      |                       |                     |                     |              |



a<sub>0</sub> was constrained to 1.0.

**Supplementary Figure 2.** Kinetics of calcium unbinding from HaloCaMP1a or HaloCaMP1b bound to JF<sub>635</sub>-HTL. A stopped flow instrument was used follow the decrease in fluorescence emission from recombinant calcium-saturated HaloCaMP<sub>635</sub> following rapid mixing with excess calcium chelator (EGTA, 10 mM). HaloCaMP1a was fit to a two-phase exponential model and HaloCaMP1b was fit to a one-phase exponential model. Mean and s.d. for 27 trials over 3 independent days, normalized to the initial fluorescence intensity at time 0.



**Supplementary Figure 3.** Fluorescence response of HASAP1<sub>635</sub> in response to a 100 mV potential step. Insets: Zoom in on fluorescence response to membrane depolarization (from -70 mV to +30 mV), and repolarization (from +30 mV to -70 mV). Solid black line is fit of rise and decay kinetics to a double exponential function. Image acquisition rate 1200 Hz. See Table S4 for full kinetic data.



**Supplementary Figure 4.** Fluorescence response of HArclight1<sub>635</sub> in response to a 100 mV potential step. Insets: Zoom in on fluorescence response to membrane depolarization (from -70 mV to +30 mV), and repolarization (from +30 mV to -70 mV). Solid black line is fit of rise and decay kinetics to a double exponential function. Image acquisition rate 1200 Hz. See Table S4 for full kinetic data.

## SUPPLEMENTARY TABLES

|                                       | HaloTag-TMR        | Ca <sup>2+</sup> -HaloCaMP1b- |
|---------------------------------------|--------------------|-------------------------------|
| Data collection                       | (FDB 0032)         |                               |
| Space group                           | P42212             | P2                            |
| Cell dimensions                       |                    | 1 2                           |
| a h c (Å)                             | 62 53 62 53 164 17 | 92 56 60 66 122 60            |
| $\alpha, \beta, \gamma(\circ)$        | 90 90 90           | 90 91 0 90                    |
| Resolution (Å)                        | 62,53 = 1,80       | 9254 - 200                    |
|                                       | $(1.90 - 1.80)^*$  | (2 11 - 2 00)                 |
| Rev.m (%)                             | 10.3 (54.5)        | 9.6 (69.6)                    |
|                                       | 11 2 (2 4)         | 65(11)                        |
| Completeness (%)                      | 97.0 (97.6)        | 98.6 (97.6)                   |
| Redundancy                            | 5 8 (5 9)          | 4 6 (4 4)                     |
| Rodandanoy                            | 0.0 (0.0)          |                               |
| Refinement                            |                    |                               |
| Resolution (Å)                        | 58.43 – 1.80       | 122.58 – 2.00                 |
| No. reflections                       | 30,022             | 90,798                        |
| R <sub>work</sub> / R <sub>free</sub> | 15.7/19.3          | 18.8/22.6                     |
| No. atoms                             |                    |                               |
| Protein                               | 2350               | 7420                          |
| Dye-HaloTag ligand                    | 76                 | 100                           |
| Chloride ions                         | 1                  | 2                             |
| Calcium ions                          | -                  | 8                             |
| Water                                 | 177                | 203                           |
| <i>B</i> -factors                     |                    |                               |
| Protein                               | 28.8               | 53.1                          |
| Dye-HaloTag ligand                    | 37.9               | 87.9                          |
| Chloride ions                         | 20.8               | 38.9                          |
| Calcium ions                          | -                  | 54.0                          |
| Water                                 | 36.4               | 47.8                          |
| R.m.s. deviations                     |                    |                               |
| Bond lengths (Å)                      | 0.030              | 0.026                         |
| Bond angles (°)                       | 2.54               | 2.44                          |

**Supplementary Table 1.** X-ray diffraction data collection and model refinement statistics. \*Values in parentheses are for highest-resolution shell. One crystal was used for each structure.

| HaloCaMP<br>variant | Peptide | L1    | L2    | € <sub>sat</sub><br>(M⁻¹.cm⁻¹) | $\Phi_{sat}$ | Brightness<br>(mM <sup>-1</sup> .cm <sup>-1</sup> ) | ∆F/F₀ | K₀ (nM) |
|---------------------|---------|-------|-------|--------------------------------|--------------|-----------------------------------------------------|-------|---------|
| 1a                  | MLCK    | PEFAA | REFAR | 96,000                         | 0.78         | 74.9                                                | 5.0   | 190     |
| 1b                  | СКК     | PK    | PFAR  | 60,000                         | 0.75         | 45.0                                                | 9.2   | 43      |

**Supplementary Table 2**. Properties of HaloCaMP variants 1a and 1b labeled with JF<sub>635</sub>-HaloTag ligand.

| Dye           | λ <sub>ex</sub> (nm) | λ <sub>em</sub> (nm) | ε (M <sup>-1</sup> .cm <sup>-1</sup> ) | Φ    |
|---------------|----------------------|----------------------|----------------------------------------|------|
| <b>JF</b> 635 | 635                  | 652                  | ~400                                   | 0.56 |
| <b>JF</b> 646 | 646                  | 664                  | 5000                                   | 0.54 |
| <b>JF</b> 639 | 639                  | 656                  | 5000                                   | 0.62 |
| <b>JF</b> 630 | 630                  | 649                  | ~700                                   | NM   |
| <b>JF</b> 629 | 629                  | 648                  | <200                                   | NM   |
| <b>JF</b> 626 | 626                  | 638                  | <200                                   | NM   |
| <b>JF</b> 614 | 614                  | 631                  | <200                                   | NM   |

**Supplementary Table 3.** Photophysical properties of azetidine-substituted Si-rhodamines in 10 mM HEPES, pH = 7.4. NM: not measured.

| Ligand                                       |           | λ <sub>ex</sub> (nm) | λ <sub>em</sub> (nm) | ε (M <sup>-1</sup> .cm <sup>-1</sup> ) | Φ    |
|----------------------------------------------|-----------|----------------------|----------------------|----------------------------------------|------|
| 1 / IE. HoloTog ligond \9                    | – HaloTag | 635                  | 652                  | ~400                                   | NM   |
| I (JF635-Halo ray ligariu)                   | + HaloTag | 640                  | 656                  | 81000                                  | 0.75 |
| <b>5</b> (IFace HoleTeg ligend) <sup>9</sup> | – HaloTag | 649                  | 666                  | 6000                                   | 0.52 |
| <b>5</b> (JF646-Halo ray ligarid)*           | + HaloTag | 652                  | 666                  | 95000                                  | 0.64 |
| 6 (IE., HoloTog ligond)                      | – HaloTag | 645                  | 658                  | 5300                                   | 0.63 |
| <b>6</b> (JF639-Halo I ag ligand)            | + HaloTag | 647                  | 663                  | 120000                                 | 0.71 |
| 7 (IEase HoloTog ligond)                     | – HaloTag | 633                  | 657                  | 1200                                   | NM   |
| (JF630-Halo Tag liganu)                      | + HaloTag | 639                  | 656                  | 32000                                  | 0.70 |
| 9 (IE., HoloTog ligond)                      | – HaloTag | 638                  | 655                  | <200                                   | NM   |
| <b>8</b> (JF629-Hai0Tag ligand)              | + HaloTag | 638                  | 656                  | 29000                                  | 0.81 |
| <b>0</b> (IE HoloTog ligond)                 | – HaloTag | 634                  | 647                  | <200                                   | NM   |
| <b>9</b> (JF626-Hai0Tag ligand)              | + HaloTag | 639                  | 654                  | 57000                                  | 0.73 |
| 10 (IE., HeleTeg ligand)                     | - HaloTag | 622                  | 640                  | <200                                   | NM   |
| i (JF614-Haio l'ag ligand)                   | + HaloTag | 628                  | 646                  | 7000                                   | 0.74 |

**Supplementary Table 4.** Photophysical properties of Si-rhodamines HaloTag ligands in the presence or absence of HaloTag protein in 10 mM HEPES pH = 7.4 containing 0.1 mg·mL<sup>-1</sup> CHAPS. NM: not measured.

| -                                                         | HaloC | aMP1a               | HaloC | aMP1b               |
|-----------------------------------------------------------|-------|---------------------|-------|---------------------|
| Ligand                                                    | ∆F/F₀ | K <sub>d</sub> (nM) | ∆F/F₀ | K <sub>d</sub> (nM) |
| <b>1</b> (JF <sub>635</sub> -HaloTag ligand) <sup>9</sup> | 5.0   | 190                 | 9.2   | 43                  |
| 5 (JF <sub>646</sub> -HaloTag ligand) <sup>9</sup>        | 0.6   | 65                  | 0.9   | 19                  |
| <b>6</b> (JF <sub>639</sub> -HaloTag ligand)              | 1.1   | 128                 | 2.3   | 32                  |
| 7 (JF <sub>630</sub> -HaloTag ligand)                     | 7.8   | 340                 | 8.7   | 67                  |
| <b>8</b> (JF <sub>629</sub> -HaloTag ligand)              | 13.8  | 118                 | 20.9  | 44                  |
| <b>9</b> (JF <sub>626</sub> -HaloTag ligand)              | 11.8  | 391                 | 7.4   | 42                  |
| <b>10</b> (JF <sub>614</sub> -HaloTag ligand)             | 29.5  | 892                 | 10.8  | 61                  |

**Supplementary Table 5.** Ca<sup>2+</sup> binding properties of HaloCaMP1a and 1b bound to Si-rhodamine ligands measured in solution.

|                                  | Activation<br>(-70 mV to 30 mV | )<br>)            |        | Deactivation<br>(30 mV to -70 mV) |                   |        |  |  |
|----------------------------------|--------------------------------|-------------------|--------|-----------------------------------|-------------------|--------|--|--|
|                                  | τ <sub>fast</sub> (ms)         | $	au_{slow}$ (ms) | % fast | $	au_{fast}\left(ms\right)$       | $	au_{slow}$ (ms) | % fast |  |  |
| HASAP1-<br>JF <sub>635</sub>     | 2.1 ± 0.2                      | 5.2 ± 0.6         | 96 ± 3 | 1.1 ± 0.1                         | 3.7 ± 0.3         | 50 ± 8 |  |  |
| HArclight1-<br>JF <sub>635</sub> | 2.2 ± 0.2                      | 8.5 ± 0.3         | 54 ± 5 | 1.6 ± 0.2                         | 8.1 ± 0.6         | 37 ± 3 |  |  |

**Supplementary Table 6**. HASAP1 and HArclight1 kinetics in primary rat neuron cultures. Neurons expressing HASAP1 and Harclight1 were imaged at 1 kHz during whole cell voltage clamp. Fluorescence traces were fit using a double exponential function (Supplementary Figs. 12,14). % fast is the percentage of fluorescence change attributed to the fast-changing component of the bi-exponential fit to the fluorescence change. The remainder is attributed to the slow-changing component. Errors are s.e.m. N = 8 cells for HASAP1 and N = 6 cells for HArclight1.

#### SUPPLEMENTARY NOTE

#### SYNTHETIC PROCEDURES

**Procedure A:** Synthesis of Si-rhodamines by Pd-catalyzed cross-coupling. The following procedure for (**12**; **JF**<sub>639</sub>) is representative. A vial was charged with silafluorescein ditriflate **11**<sup>10</sup> (50 mg, 78 µmol), 3-methoxyazetidine hydrochloride (39 mg, 312 µmol, 4 eq), Pd<sub>2</sub>dba<sub>3</sub> (7.1 mg, 7.8 µmol, 0.1 eq), XPhos (11.2 mg, 23.4 µmol, 0.3 eq), and Cs<sub>2</sub>CO<sub>3</sub> (204 mg, 625 mmol, 8 eq). The vial was sealed and evacuated/backfilled with nitrogen (3x). Dioxane (2 mL) was added, and the reaction was flushed again with nitrogen (3x). The reaction was then stirred at 100 °C overnight. It was subsequently cooled to room temperature, diluted with MeOH, deposited onto Celite, and concentrated to dryness. The residue was purified as described.



(12; JF<sub>639</sub>): Purification by silica gel chromatography (0–35% EtOAc/toluene, linear gradient) afforded 12 (78%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.96 (d, *J* = 7.6 Hz, 1H), 7.64 (td, *J* = 7.5, 1.2 Hz, 1H), 7.54 (td, *J* = 7.5, 1.0 Hz, 1H), 7.32 – 7.27 (m, 1H), 6.77 (d, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 2.7 Hz, 2H), 6.28 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.38 – 4.27 (m, 2H), 4.10 (d, *J* = 7.3 Hz, 4H), 3.73 (dt, *J* = 7.7, 4.0 Hz, 4H), 3.32 (s, 6H), 0.61 (s, 3H), 0.58 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.7 (C), 154.3 (C), 150.4 (C), 137.1 (C), 133.8 (CH), 133.3 (C), 128.9 (CH), 128.1 (CH), 127.0 (C), 125.9 (CH), 124.7 (CH), 116.1 (CH), 112.7 (CH), 91.9 (C), 70.1 (CH<sub>3</sub>), 58.9 (CH<sub>2</sub>), 56.2 (CH), 0.5 (CH<sub>3</sub>), -1.4 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>30</sub>H<sub>33</sub>N<sub>2</sub>O<sub>4</sub>Si [M+H]<sup>+</sup> 513.2210, found 513.2202.



(13; JF<sub>630</sub>): Synthesized following procedure A from silafluorescein ditriflate and 3-methylsulfonyl-azetidine hydrochloride. Purification by silica gel chromatography (50–100% EtOAc/hexane, linear gradient) afforded 13 (80%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.96 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.65 (td, *J* = 7.5, 1.2 Hz, 1H), 7.55 (td, *J* = 7.5, 1.0 Hz, 1H), 7.28 – 7.25 (m, 1H), 6.83 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 2.7 Hz, 2H), 6.31 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.29 – 4.15 (m, 8H), 4.07 (tt, *J* = 7.5, 5.7 Hz, 2H), 2.96 (s, 6H), 0.62 (s, 3H), 0.59 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.6 (C), 154.2 (C), 149.2 (C), 137.1 (C), 134.8 (C), 134.1 (CH), 129.1 (CH), 128.2 (CH), 126.6 (C), 126.0 (CH), 124.6 (CH), 116.2 (CH), 113.0 (CH), 91.2 (C), 52.5 (CH<sub>2</sub>), 52.4 (CH<sub>2</sub>), 51.7 (CH), 38.3 (CH<sub>3</sub>), 0.4 (CH<sub>3</sub>), -1.3 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>30</sub>H<sub>33</sub>N<sub>2</sub>O<sub>6</sub>SiS<sub>2</sub> [M+H]<sup>+</sup> 609.1549, found 609.1548.



(14; JF<sub>629</sub>): Synthesized following procedure A from silafluorescein ditriflate and 3-azetidinecarbonitrile hydrochloride. Purification by HPLC (35-95% MeCN/H<sub>2</sub>O + 0.1% TFA additive) afforded 14 (42%) as a light blue solid. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz)  $\delta$  7.93 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.66 (td, *J* = 7.5, 1.2 Hz, 1H), 7.57 (td, *J* = 7.5, 1.0 Hz, 1H), 7.24 (dd, *J* = 7.7, 1.0 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.72 (d, *J* = 2.7 Hz, 2H), 6.33 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.20 (ddd, *J* = 8.6, 7.1, 1.8 Hz, 4H), 4.13 – 4.03 (m, 4H), 3.60 (tt, *J* = 8.4, 6.1 Hz, 2H), 0.63 (s, 3H), 0.57 (s, 3H); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 101 MHz)  $\delta$  <sup>13</sup>C NMR (101 MHz, CD<sub>2</sub>Cl<sub>2</sub>)  $\delta$  170.7 (C), 154.8 (C), 150.1 (C), 137.3 (C), 135.0 (C), 134.6 (CH), 129.6 (CH), 128.5 (CH), 126.8 (C), 126.3 (CH), 124.8 (CH), 120.5 (C), 116.6 (CH), 113.4 (CH), 91.4 (C), 55.9 (CH<sub>2</sub>), 19.1 (CH), 0.4 (CH<sub>3</sub>), -1.1 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>30</sub>H<sub>27</sub>N<sub>4</sub>O<sub>2</sub>Si [M+H]<sup>+</sup> 503.1903, found 503.1899.



(15; JF<sub>626</sub>): Synthesized following procedure A from silafluorescein ditriflate and 3-(trifluoromethyl)azetidine hydrochloride. Purification by silica gel chromatography (0–100% EtOAc/hexane, linear gradient), followed by purification by silica gel chromatography (0–35% EtOAc/toluene) afforded 15 (76%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.97 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.66 (td, *J* = 7.5, 1.2 Hz, 1H), 7.56 (td, *J* = 7.5, 1.0 Hz, 1H), 7.29 (dd, *J* = 7.7, 0.9 Hz, 1H), 6.82 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 2.7 Hz, 2H), 6.29 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.14 – 4.04 (m, 4H), 4.01 – 3.91 (m, 4H), 3.49 – 3.29 (m, 2H), 0.62 (s, 3H), 0.60 (s, 3H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) = -73.4 (d, <sup>3</sup><sub>JHF</sub> = 8.8 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.5 (C), 154.1 (C), 149.5 (C), 137.2 (C), 134.1 (CH), 133.9 (C), 129.1 (CH), 128.2 (CH), 126.5 (q, <sup>2</sup><sub>JCF</sub> = 81.5Hz, CF<sub>3</sub>), 126.0 (CH), 124.7 (CH), 115.8 (CH), 112.5 (CH), 91.5 (C), 51.4 (CH<sub>2</sub>), 51.3 (CH<sub>2</sub>), 32.8 (q, <sup>3</sup><sub>JCF</sub> = 32.3 Hz, C), 0.5 (CH<sub>3</sub>), -1.5 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>30</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub>SiF<sub>6</sub> [M+H]<sup>+</sup> 589.1746, found 589.1751.



**(16; JF**<sub>614</sub>**):** Synthesized following procedure A from silafluorescein ditriflate and 3,3-difluoroazetidine hydrochloride. Purification by silica gel chromatography (0–100% EtOAc/hexane, linear gradient), followed by purification by silica gel chromatography (0–35% EtOAc/toluene) afforded **16** (24%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98 (dt, *J* = 7.6, 1.0 Hz, 1H), 7.66 (td, *J* = 7.5, 1.2 Hz, 1H), 7.56 (td, *J* = 7.5, 1.0 Hz, 1H), 7.30 – 7.28 (m, 1H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 2.7 Hz, 2H), 6.34 (dd, *J* = 8.7, 2.8 Hz, 2H), 4.23 (t, <sup>3</sup>*J*<sub>HF</sub> = 11.8 Hz, 8H), 0.64 (s, 3H), 0.61 (s, 3H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) = -99.9 (p, <sup>3</sup>*J*<sub>HF</sub> = 11.7 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.5 (C), 154.0 (C), 148.7 (t, <sup>4</sup>*J*<sub>CF</sub> = 2.6 Hz, C), 137.3 (C), 134.8 (C), 134.0 (CH), 129.2 (CH), 128.2 (CH), 126.8 (C), 126.1 (CH), 124.6 (CH), 116.8 (CH), 115.9 (t, <sup>1</sup>*J*<sub>CF</sub> = 276 Hz, CF<sub>2</sub>), 113.6 (CH), 91.2 (C), 63.4 (t, <sup>2</sup>*J*<sub>HF</sub> = 25.9,CH<sub>2</sub>), 0.4 (CH<sub>3</sub>), -1.4 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>28</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub>SiF<sub>4</sub> [M+H]<sup>+</sup> 525.1621, found 525.1629.



(17): Synthesized following procedure A from 6-*tert*-butoxycarbonylsilafluorescein ditriflate  $4^{10}$  and 3-methoxyazetidine hydrochloride. Purification by silica gel chromatography (0–30% EtOAc/hexane, linear gradient), afforded **17** (94%) as an off-white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.11 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 1.2 Hz, 1H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 2.7 Hz, 2H), 6.32 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.38 – 4.27 (m, 2H), 4.16 – 4.04 (m, 4H), 3.78 – 3.68 (m, 4H), 3.32 (s, 6H), 1.55 (s, 9H), 0.65 (s, 3H), 0.58 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.3 (C), 164.4 (C), 155.4 (C), 150.4 (C), 137.3 (C), 136.2 (C), 132.8 (C), 130.0 (CH), 129.1 (C), 127.7 (CH), 125.7 (CH), 125.1 (CH), 116.1 (CH), 113.1 (CH), 91.7 (C), 82.4 (C), 70.1 (CH<sub>3</sub>), 58.9 (CH<sub>2</sub>), 56.2 (CH), 28.2 (CH<sub>3</sub>), 0.2 (CH<sub>3</sub>), -0.7 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>35</sub>H<sub>41</sub>N<sub>2</sub>O<sub>6</sub>Si [M+H]<sup>+</sup> 613.2734, found 613.2726.



(18): Synthesized following procedure A from 6-*tert*-butoxycarbonylsilafluorescein ditriflate 4 and 3-methylsulfonyl-azetidine hydrochloride. Purification by silica gel chromatography (50–100% EtOAc/hexane, linear gradient), afforded 18 (87%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.12 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.97 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.79 (t, *J* = 1.0 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.72 (d, *J* = 2.7 Hz, 2H), 6.38 (dd, *J* = 8.8, 2.7 Hz, 2H), 4.31 – 4.19 (m, 8H), 4.15 – 4.03 (m, 2H), 2.97 (s, 6H), 1.55 (s, 9H), 0.67 (s, 3H), 0.59 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.2 (C), 164.3 (C), 155.2 (C), 149.2 (C), 137.5 (C), 136.2 (C), 134.3 (C), 130.2 (CH), 128.7 (C), 127.8 (CH), 125.9 (CH), 124.9 (CH), 116.2 (CH), 113.3 (CH), 90.9 (C), 82.6 (C), 52.5 (CH<sub>2</sub>), 51.7 (CH), 38.3 (CH<sub>3</sub>), 28.2 (CH<sub>3</sub>), 0.1 (CH<sub>3</sub>), -0.6 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>35</sub>H<sub>41</sub>N<sub>2</sub>O<sub>8</sub>SiS<sub>2</sub> [M+H]<sup>+</sup> 709.2073, found 709.2074.



(19): Synthesized following procedure A from 6-*tert*-butoxycarbonylsilafluorescein ditriflate 4 and 3-azetidinecarbonitrile hydrochloride. Purification by silica gel chromatography (0–20% EtOAc/hexane, linear gradient) afforded 19 (88%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.13 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.97 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.81 (t, *J* = 1.0 Hz, 1H), 6.91 (d, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 2.7 Hz, 2H), 6.33 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.25 – 4.17 (m, 4H), 4.14 – 4.02 (m, 4H), 3.59 (tt, *J* = 8.4, 6.2 Hz, 2H), 1.55 (s, 9H), 0.68 (s, 3H), 0.59 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz) 170.0 (C), 164.3 (C), 154.9 (C), 149.4 (C), 137.5 (C), 136.3 (C), 134.4 (C), 130.2 (CH), 128.8 (C), 127.8 (CH), 125.9 (CH), 124.9 (CH), 119.7 (C), 116.1 (CH), 113.3 (CH), 90.9 (C), 82.6 (C), 55.3 (CH<sub>2</sub>), 28.2 (CH<sub>3</sub>), 18.5 (CH), 0.1 (CH<sub>3</sub>), -0.7 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>35</sub>H<sub>35</sub>N<sub>4</sub>O<sub>4</sub>Si [M+H]<sup>+</sup> 603.2428, found 603.2425.



(20): Synthesized following procedure A from 6-*tert*-butoxycarbonylsilafluorescein ditriflate **4** and 3-(trifluoromethyl)azetidine hydrochloride. Purification by silica gel chromatography (0–20% EtOAc/hexane, linear gradient) afforded **20** (54%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.12 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.82 (s, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 6.68 (d, *J* = 2.6 Hz, 2H), 6.33 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.08 (t, *J* = 8.1 Hz, 4H), 3.98 (dt, *J* = 7.8, 5.6 Hz, 4H), 3.39 (qt, *J* = 8.5, 5.8 Hz, 2H), 1.55 (s, 9H), 0.66 (s, 3H), 0.59 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.2 (C), 164.4 (C), 155.0 (C), 149.5 (C), 137.4 (C), 136.4 (C), 133.6 (C), 130.1 (CH), 129.0 (C), 127.8 (CH), 125.8 (CH), 125.1 (CH), 125.0 (C), 115.8 (CH), 112.8 (CH), 91.3 (C), 82.5 (C), 51.33 (CH<sub>2</sub>), 51.30 (CH<sub>2</sub>), 33.2 (q, <sup>3</sup><sub>JCF</sub> = 32.1 Hz, C), 28.2 (CH<sub>3</sub>), 0.2 (CH<sub>3</sub>), -0.7 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>35</sub>H<sub>35</sub>N<sub>2</sub>O<sub>4</sub>SiF<sub>6</sub> [M+H]<sup>+</sup> 689.2270, found 689.2282.



(21): Synthesized following procedure A from 6-*tert*-butoxycarbonylsilafluorescein ditriflate **4** and 3,3-difluoroazetidine hydrochloride. Purification by silica gel chromatography (0–30% EtOAc/hexane, linear gradient), followed by purification by silica gel chromatography (0–20% EtOAc/hexanes) afforded **21** (71%) as an off-white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.13 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.98 (dd, *J* = 8.1, 0.8 Hz, 1H), 7.82 (t, *J* = 1.0 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.73 (d, *J* = 2.7 Hz, 2H), 6.38 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.24 (t, *J* = 11.7 Hz, 8H), 1.55 (s, 9H), 0.68 (s, 3H), 0.61 (s, 3H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) = -99.3 (p, <sup>3</sup>*J*<sub>HF</sub> = 11.9 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 101 MHz)  $\delta$  170.0 (C), 164.3 (C), 155.0 (C), 148.7 (t, <sup>4</sup>*J*<sub>HF</sub> = 2.8 Hz, C), 137.5 (C), 136.5 (C), 134.3 (C), 130.2 (CH), 128.9 (C), 127.9 (CH), 125.9 (CH), 125.0 (C), 116.8 (CH), 115.9 (t, <sup>1</sup>*J*<sub>CF</sub> = 276 Hz, CF<sub>2</sub>), 113.9 (CH), 91.0 (C), 82.5 (C), 63.4 (t, <sup>2</sup>*J*<sub>HF</sub> = 26.0 Hz, CH<sub>2</sub>), 28.2 (CH<sub>3</sub>), 0.2 (CH<sub>3</sub>), -0.7 (CH<sub>3</sub>); HRMS (ESI) calcd for C<sub>33</sub>H<sub>33</sub>N<sub>2</sub>O<sub>4</sub>SiF<sub>4</sub> [M+H]<sup>+</sup> 625.2146, found 625.2145.

**Procedure B:** Synthesis of HaloTag ligands. The following procedure for **6** is representative. **17** (36 mg, 59 µmol) was taken up in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) and trifluoroacetic acid (0.25 mL) was added. The reaction was stirred at room temperature overnight. Toluene (3 mL) was added, the reaction mixture was concentrated to dryness and then azeotroped with MeOH three times. The residue was combined with HaloTag(O<sub>2</sub>)amine (TFA salt, 30 mg, 89 µmol, 1.5 eq), HATU (34 mg, 89 µmol, 1.5 eq) in DMF (1.5 mL). DIEA (52 µL, 295 µmol, 5.0 eq) was added and the mixture was stirred at room temperature for 4 h. It was subsequently evaporated to dryness and purified as described.



(6; JF<sub>639</sub>-HaloTag ligand): Purification by silica gel chromatography (30–100% EtOAc/hexanes, linear gradient) provided 6 (60%) as a light-blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.91 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.68 (t, *J* = 1.0 Hz, 1H), 6.81 (br s, 1H), 6.76 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 2.7 Hz, 2H), 6.29 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.37 – 4.29 (m, 2H), 4.13 – 4.07 (m, 4H), 3.76 – 3.70 (m, 4H), 3.66 – 3.60 (m, 6H), 3.56 – 3.52 (m, 2H), 3.50 (t, *J* = 6.7 Hz, 2H), 3.39 (t, *J* = 6.7 Hz, 2H), 3.32 (s, 6H), 1.78 – 1.69 (m, 2H), 1.51 (p, *J* = 6.9 Hz, 2H), 1.44 – 1.35 (m, 2H), 1.34 – 1.23 (m, 2H), 0.64 (s, 3H), 0.57 (s, 3H); Analytical HPLC: t<sub>R</sub> = 13.0 min, 99% purity (10–95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v

TFA additive, 20 min run, 1 mL/min flow, detection at 254 nm); HRMS (ESI) calculated for C<sub>41</sub>H<sub>53</sub>CIN<sub>3</sub>O<sub>7</sub>Si [M+H]<sup>+</sup> 762.3341, found 762.3352.



(7; JF<sub>630</sub>-HaloTag ligand): Synthesized following procedure B from 18. Purification by silica gel chromatography (0–4% MeOH/CH<sub>2</sub>Cl<sub>2</sub>, linear gradient), followed by purification by silica gel chromatography (50–100% EtOAc/hexanes, linear gradient) afforded 7 (65%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$ .97 (d, *J* = 7.9 Hz, 1H), 7.89 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.68 (t, *J* = 1.0 Hz, 1H), 6.91 – 6.87 (m, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 2.7 Hz, 2H), 6.32 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.28 – 4.17 (m, 8H), 4.13 – 4.03 (m, 2H), 3.67 – 3.59 (m, 6H), 3.57 – 3.54 (m, 2H), 3.50 (t, *J* = 6.7 Hz, 2H), 3.40 (t, *J* = 6.7 Hz, 2H), 2.96 (s, 6H), 1.78 – 1.67 (m, 2H), 1.51 (p, *J* = 6.8 Hz, 2H), 1.44 – 1.35 (m, 2H), 1.35 – 1.26 (m, 2H), 0.65 (s, 3H), 0.57 (s, 3H); Analytical HPLC: t<sub>R</sub> = 13.0 min, 98% purity (10–95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v TFA additive, 20 min run, 1 mL/min flow, detection at 254 nm); HRMS (ESI) calculated for C<sub>41</sub>H<sub>53</sub>CIN<sub>3</sub>O<sub>9</sub>S<sub>2</sub>Si [M+H]<sup>+</sup> 858.2681, found 858.2690.



**(8;** JF<sub>629</sub>-HaloTag ligand): Synthesized following procedure B from 19. Purification by silica gel chromatography (20–100% EtOAc/hexanes, linear gradient) afforded **8** (73%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.98 (dd, *J* = 8.0, 0.7 Hz, 1H), 7.88 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.70 (t, *J* = 1.0 Hz, 1H), 6.89 – 6.82 (m, 3H), 6.67 (d, *J* = 2.6 Hz, 2H), 6.30 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.20 (dd, *J* = 8.5, 7.0 Hz, 4H), 4.09 (q, *J* = 6.7 Hz, 4H), 3.65 – 3.54 (m, 10H), 3.50 (t, *J* = 6.6 Hz, 2H), 3.41 (t, *J* = 6.7 Hz, 2H), 1.77 – 1.69 (m, 4H), 1.52 (p, *J* = 6.9 Hz, 2H), 1.44 – 1.36 (m, 2H), 1.35 – 1.28 (m, 2H), 0.66 (s, 3H), 0.58 (s, 3H); Analytical HPLC: t<sub>R</sub> = 14.4 min, 97% purity (10–95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v TFA additive, 20 min run, 1 mL/min flow, detection at 254 nm); HRMS (ESI) calculated for C<sub>41</sub>H<sub>47</sub>ClN<sub>5</sub>O<sub>5</sub>Si [M+H]<sup>+</sup> 752.3035, found 752.3044.



(9; JF<sub>626</sub>-HaloTag ligand): Synthesized following procedure B from 20. Purification by silica gel chromatography (30–100% EtOAc/hexanes, linear gradient) afforded 9 (83%) as a light blue solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  <sup>1</sup>H 7.99 (d, *J* = 7.8 Hz, 1H), 7.89 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.73 – 7.68 (m, 1H), 6.84 –

6.78 (m, 3H), 6.67 (d, J = 2.7 Hz, 2H), 6.29 (dd, J = 8.7, 2.7 Hz, 2H), 4.07 (t, J = 8.1 Hz, 4H), 4.01 – 3.92 (m, 4H), 3.68 – 3.60 (m, 6H), 3.58 – 3.54 (m, 2H), 3.50 (t, J = 6.6 Hz, 2H), 3.45 – 3.34 (m, 4H), 1.77 – 1.68 (m, 2H), 1.56 – 1.46 (m, 2H), 1.44 – 1.35 (m, 2H), 1.34 – 1.26 (m, 2H), 0.65 (s, 3H), 0.58 (s, 3H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) = -73.5 (d, <sup>3</sup> $_{JHF}$  = 8.7 Hz); Analytical HPLC: t<sub>R</sub> = 16.4 min, 98% purity (10–95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v TFA additive, 20 min run, 1 mL/min flow, detection at 254 nm); HRMS (ESI) calculated for C<sub>41</sub>H<sub>47</sub>ClF<sub>6</sub>N<sub>3</sub>O<sub>5</sub>Si [M+H]<sup>+</sup> 838.2878, found 838.2891.



(10; JF<sub>614</sub>-HaloTag ligand): Synthesized following procedure B from 21. Purification by silica gel chromatography (0–3% MeOH/CH<sub>2</sub>Cl<sub>2</sub>, linear gradient) afforded 10 (75%) as an off-white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  8.00 (dd, *J* = 7.9, 0.7 Hz, 1H), 7.88 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.70 (t, *J* = 1.0 Hz, 1H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.77 – 6.70 (m, 3H), 6.36 (dd, *J* = 8.7, 2.7 Hz, 2H), 4.24 (t, *J* = 11.7 Hz, 8H), 3.67 – 3.59 (m, 6H), 3.58 – 3.53 (m, 2H), 3.50 (t, *J* = 6.6 Hz, 2H), 3.41 (t, *J* = 6.7 Hz, 2H), 1.78 – 1.69 (m, 2H), 1.57 – 1.49 (m, 2H), 1.44 – 1.36 (m, 2H), 1.35 – 1.28 (m, 2H), 0.67 (s, 3H), 0.60 (s, 3H); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz) = - 99.9 (p, <sup>3</sup><sub>JHF</sub> = 11.6 Hz); Analytical HPLC: t<sub>R</sub> = 16.3 min, 95% purity (10–95% MeCN/H<sub>2</sub>O, linear gradient, with constant 0.1% v/v TFA additive, 20 min run, 1 mL/min flow, detection at 254 nm); HRMS (ESI) calculated for C<sub>39</sub>H<sub>45</sub>CIF<sub>4</sub>N<sub>3</sub>O<sub>5</sub>Si [M+H]<sup>+</sup> 774.2753, found 774.2759.

#### NMR SPECTRA AND HPLC TRACES







0.62











# -170.54 -170.54 -170.54 -170.54 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45 -112.45

| a an adarata la sub a an adar a la far hara a            | al faithe an |                    | and the state of t | and to the shirt of the second se | and and a state | and the state of the state of the | an la di | a de la sector de la | in des setteres ( | . Mandrid Lancau          | i de la casa | i i fan i i fan i i fan i f |
|----------------------------------------------------------|--------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| n Phonologica state data at the dispersion on the second |                                                  | (blacker system de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tund konstatskipter                                                                                            | ليومع           | unguris, kas dite a bi            | Line of a general end                                                                                          |                                                                                                                 | nde 100 Bél       | n to be all head on store |                                                                                                                 | a de selado                                                                                                     |
| Spectral Size                                            | 65536                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Acquired Size                                            | 32768                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Nucleus                                                  | 13C                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Lowest Frequency                                         | _1944.9                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Spectral Width                                           | 24038.5                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Spectrometer Frequency                                   | 100.62                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Modification Date                                        | 2019-04-29T18:57:50                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Acquisition Date                                         | 2019-04-29T18:57:00                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Number of Scans                                          | 1024                                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Exportment                                               | 29pg50                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Temperature                                              | 300.0                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
| Solvent                                                  | 200.0                                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                 |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |
|                                                          |                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | - I             |                                   |                                                                                                                |                                                                                                                 |                   |                           |                                                                                                                 |                                                                                                                 |



#### 1133.96 1148.75 1148.73 1148.73 1148.73 1137.31 1124.10 1126.83 1124.10 1126.83 1124.10 1126.83 1124.10 1126.83 1137.31 113.54 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 113.53 1 63.68 63.42 63.16 ~ 0.42





| Origin               | Bruker BioSpin GmbH |                            | MeOoS                           |          | SOoMe   |              |          |
|----------------------|---------------------|----------------------------|---------------------------------|----------|---------|--------------|----------|
| Solvent              | CDCI3               |                            |                                 | 1        |         |              |          |
| Temperature          | 300.0               |                            |                                 | "Y~\"~   | -       |              |          |
| Pulse Sequence       | zg30                |                            |                                 |          |         |              |          |
| Experiment           | 1D                  |                            | 1                               | -0       |         |              |          |
| Number of Scans      | 16                  |                            | 0.                              | $\gamma$ |         |              |          |
| Acquisition Date     | 2019-08-23T10:58:00 |                            |                                 | لا       |         |              |          |
| Modification Date    | 2019-08-23T10:58:39 |                            | O- <i>t</i> Bu                  |          |         |              |          |
| Spectrometer Frequer | ncy 400.13          |                            |                                 |          |         |              |          |
| Spectral Width       | 8012.8              |                            |                                 |          |         |              |          |
| Lowest Frequency     | -1545.4             |                            |                                 |          |         |              |          |
| Nucleus              | 1H                  |                            |                                 |          | 1       |              |          |
| Acquired Size        | 32768               |                            |                                 | 1        |         |              |          |
| Spectral Size        | 65536               |                            |                                 | r        |         |              |          |
|                      | <i>[   ]</i>        |                            |                                 |          |         |              |          |
|                      |                     |                            | , k                             |          |         |              |          |
|                      | 1.08년<br>1.03년      | 2.00 년<br>2.04 년<br>2.05 년 | 上<br>2.27<br>上<br>2.27          | F:23     | 9.24-王  | 2.87<br>2.98 |          |
| 10.0 9.5 9           | .0 8.5 8.0 7.5      | 7.0 6.5 6.0 5              | 5.5 5.0 4.5 4.0 3.5<br>f1 (ppm) | 3.0 2.5  | 2.0 1.5 | 1.0 0.5      | 0.0 -0.5 |

#### -170.17 -155.17 -155.17 -135.13 -136.135 -134.34 -134.34 -134.34 -113.31 -113.31 -113.31 -113.31 -113.31 -113.31 -125.55 -32.45 -32.25 -32.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.55 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.25 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55 -22.55-22.55



## 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <td

| Origin<br>Solvent<br>Temperature<br>Pulse Sequence<br>Experiment<br>Number of Scans<br>Acquisition Date<br>Modification Date<br>Spectrometer Frequency<br>Spectral Width<br>Lowest Frequency<br>Nucleus<br>Acquired Size<br>Spectral Size | Bruker BioSpin GmbH<br>CDCI3<br>300.0<br>zg30<br>1D<br>16<br>2019-08-07T10:40:00<br>2019-08-07T10:40:26<br>cy 400.13<br>8012.8<br>-1545.4<br>1H<br>32768<br>65536 | $ \begin{array}{c} NC \\ \leftarrow N \\ NC \\ NC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectral Size                                                                                                                                                                                                                             | ///                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
|                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
|                                                                                                                                                                                                                                           | 1.00-<br>1.00-<br>1.00-<br>2.02-<br>2.02-<br>2.02-<br>2.02-                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.03                                                                                                                                                 |
| 10.5 10.0 9.5 9                                                                                                                                                                                                                           | 90 85 80 7.5 7.0 6.5 6.0 5<br>12 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                           | i5 5.0 4.5 4.0 3.5 3.0 2.5 2.0<br>httpp://www.sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.org/action/sec.or | 0 1.5 1.0 0.5 0.0 -0.5<br>1.5 1.0 0.5 0.0 -0.5<br>1.6 0.1<br>1.8 27<br>1.9 0.5<br>1.9 0.5<br>1.9 0.5<br>1.5 1.0 0.5 0.0 -0.5<br>1.5 1.0 0.5 0.0 -0.5 |



| Solvent<br>Solvent<br>Temperature<br>Pulse Sequence<br>Experiment<br>Number of Scans<br>Acquisition Date<br>Modification Date<br>Spectrometer Freque<br>Spectral Width<br>Lowest Frequency<br>Nucleus<br>Acquired Size<br>Spectral Size   | CDCI3<br>300.0<br>2930<br>1D<br>16<br>2019-08-01T10:17:00<br>2019-08-01T10:17:14<br>ency 400.13<br>8012.8<br>-1545.4<br>1H<br>32768<br>65536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         | F₃C                                   | O-BU             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | 55 50 45                              |                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| Origin<br>Solvent<br>Temperature<br>Pulse Sequence<br>Experiment<br>Number of Scans<br>Acquisition Date<br>Modification Date<br>Spectrometer Frequency<br>Spectral Width<br>Lowest Frequency<br>Nucleus<br>Acquired Size<br>Spectral Size | 9         6         6         6         5         6         5         6         5         6         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6 | 149 47<br>137 36<br>138 60<br>119 61<br>110 621<br>125 10<br>125 10<br>125 10<br>125 10 | 11 (ppm)                              | - 82 49          | 51.33                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~0.15                                  |
| 1849-1940-19-19-19-19-19-19-19-19-19-19-19-19-19-                                                                                                                                                                                         | Marie Namina (Nation of a Michaedal Jones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | and state in the second state special | NYOLogard Conjur | ale operation of the first of the second | ethene half some at the state of the state o | n/Mijalitzyjskajijato kodjatavjekolomi |



#### 7.7.7.7.9.9 7.7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9 7.7.7.9









| Origin               | Bruker BioSpin GmbH                                    |                                                             |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
| Solvent              | CDCI3                                                  | NC CN                                                       |  |  |  |  |  |  |
| Temperature          | 300.0                                                  | N, Si, N,                                                   |  |  |  |  |  |  |
| Pulse Sequence       | zg30                                                   | l l l l                                                     |  |  |  |  |  |  |
| Experiment           | 1D                                                     |                                                             |  |  |  |  |  |  |
| Number of Scans      | 16                                                     |                                                             |  |  |  |  |  |  |
| Acquisition Date     | 2019_07_31T07:59:00                                    | o tro                                                       |  |  |  |  |  |  |
| Modification Date    | 2019-07-31T07:59:44                                    | HN A A                                                      |  |  |  |  |  |  |
| Spectrometer Frequen | ncy 400.13                                             |                                                             |  |  |  |  |  |  |
| Spectral Width       | 8012.8                                                 |                                                             |  |  |  |  |  |  |
| Lowest Frequency     | _1545.4                                                |                                                             |  |  |  |  |  |  |
| Nucleus              | 1H                                                     |                                                             |  |  |  |  |  |  |
| Acquired Size        | 32768                                                  | 1                                                           |  |  |  |  |  |  |
| Spectral Size        | 65536                                                  |                                                             |  |  |  |  |  |  |
|                      |                                                        |                                                             |  |  |  |  |  |  |
|                      | 부탁         부탁         부           0.000         주 0.00 | · · · · · · · · · · · · · · · · · · ·                       |  |  |  |  |  |  |
|                      | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                  | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                     |  |  |  |  |  |  |
| 10.0 9.5 9.0         | 8.5 8.0 7.5 7.0 6.5 6.0 5.5                            | 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5<br>f1(ppm) |  |  |  |  |  |  |











